#![allow(unused)] fn main() { //! # Fundamentals lesson 5: XCM Executor //! //! Create your own executor for XCM. use super::holding::*; use sp_std::{marker::PhantomData, prelude::*}; use xcm::latest::prelude::*; use xcm_executor::traits::{ProcessTransaction, TransactAsset}; pub trait XcmConfig { /// How to withdraw and deposit an asset. type AssetTransactor: TransactAsset; /// Transactional processor for XCM instructions. type TransactionalProcessor: ProcessTransaction; } /// The heart of the XCM Virtual Machine. pub struct XcmExecutor<Config: XcmConfig> { /// The asset holding registrar, where we keep track of assets being processed by the XCM /// Executor. pub holding: AssetsInHolding, /// Contextual data pertaining to a specific list of XCM instructions. Most relevant the /// `origin` of the XCM Message. pub context: XcmContext, /// Just a placeholder to allow Rust to let us keep `Config`. _config: PhantomData<Config>, } /// The implementation of the XCM Executor and how it processes XCM. impl<Config: XcmConfig> XcmExecutor<Config> { /// Crete an initialize a new XCM Executor. pub fn new(origin: impl Into<Location>) -> Self { let origin = origin.into(); // In our version of the XCM Executor, we ignore `message_id` and `topic`. let context = XcmContext { origin: Some(origin), message_id: Default::default(), topic: None }; Self { holding: Default::default(), context, _config: PhantomData } } /// Process an entire XCM program, instruction by instruction. pub fn process(&mut self, xcm: Xcm<()>) -> Result<(), XcmError> { log::trace!(target: "xcm::process", "xcm: {:?}", xcm); for instruction in xcm.0.into_iter() { self.process_instruction(instruction)?; } Ok(()) } /// Simple helper function to access the `origin` from the XCM Executor `context`. pub fn origin_ref(&self) -> Option<&Location> { self.context.origin.as_ref() } /// Process a single XCM instruction, mutating the state of the XCM virtual machine. fn process_instruction(&mut self, instr: Instruction<()>) -> Result<(), XcmError> { log::trace!(target: "xcm::process_instruction", "=== {:?}", instr); match instr { // Clear the origin. // // This may be used by the XCM author to ensure that later instructions cannot command // the authority of the origin (e.g. if they are being relayed from an untrusted // source, as often the case with `ReserveAssetDeposited`). ClearOrigin => { self.context.origin = None; Ok(()) }, // Appends `who` to the current XCM Executor `origin` location. DescendOrigin(who) => self .context .origin .as_mut() .ok_or(XcmError::BadOrigin)? .append_with(who) .map_err(|_| XcmError::LocationFull), // Withdraw asset(s) (`assets`) from the ownership of `origin` and place equivalent // assets under the ownership of `beneficiary`. // // - `assets`: The asset(s) to be withdrawn. // - `beneficiary`: The new owner for the assets. TransferAsset { assets, beneficiary } => { Config::TransactionalProcessor::process(|| { // Take `assets` from the origin account (on-chain) and place into dest account. let origin = self.origin_ref().ok_or(XcmError::BadOrigin)?; // Transfer each asset using the `AssetTransactor`. for asset in assets.inner() { Config::AssetTransactor::transfer_asset( &asset, origin, &beneficiary, &self.context, )?; } Ok(()) }) }, // Withdraw asset(s) (`assets`) from the ownership of `origin` and place them into the // Holding Register. // // - `assets`: The asset(s) to be withdrawn into holding. WithdrawAsset(assets) => { Config::TransactionalProcessor::process(|| { let origin = self.origin_ref().ok_or(XcmError::BadOrigin)?; // Take `assets` from the origin account (on-chain)... for asset in assets.inner() { Config::AssetTransactor::withdraw_asset( asset, origin, Some(&self.context), )?; } Ok(()) }) .and_then(|_| { // ...and place into holding. self.holding.subsume_assets(assets.into()); Ok(()) }) }, // Reduce Holding by up to the given assets. // // Holding is reduced by as much as possible up to the assets in the parameter. It is // not an error if the Holding does not contain the assets (to make this an error, use // `ExpectAsset` prior). BurnAsset(assets) => { self.holding.saturating_take(assets.into()); Ok(()) }, // Remove the asset(s) (`assets`) from the Holding Register and place equivalent assets // under the ownership of `beneficiary` within this consensus system. // // - `assets`: The asset(s) to remove from holding. // - `beneficiary`: The new owner for the assets. DepositAsset { assets, beneficiary } => { let old_holding = self.holding.clone(); let result = Config::TransactionalProcessor::process(|| { // Take assets from the holding registrar... let deposited = self.holding.saturating_take(assets); // ... and deposit them to the `beneficiary`. for asset in deposited.into_assets_iter() { Config::AssetTransactor::deposit_asset( &asset, &beneficiary, Some(&self.context), )?; } Ok(()) }); // If we were unable to execute `deposit_asset` in the `AssetTransactor`, we reset // the XCM Executor holding registrar since no operations took place. if Config::TransactionalProcessor::IS_TRANSACTIONAL && result.is_err() { self.holding = old_holding; } result }, // Asset(s) (`assets`) have been destroyed on the `origin` system and equivalent assets // should be created and placed into the Holding Register. // // - `assets`: The asset(s) that are minted into the Holding Register. ReceiveTeleportedAsset(assets) => { Config::TransactionalProcessor::process(|| { let origin = self.origin_ref().ok_or(XcmError::BadOrigin)?; // check whether we trust origin to teleport this asset to us via config trait. for asset in assets.inner() { // We should check that the asset can actually be teleported in (for this to // be in error, there would need to be an accounting violation by one of the // trusted chains, so it's unlikely, but we don't want to punish a possibly // innocent chain/user). Config::AssetTransactor::can_check_in(origin, asset, &self.context)?; Config::AssetTransactor::check_in(origin, asset, &self.context); } Ok(()) }) .and_then(|_| { // ...and place into holding. self.holding.subsume_assets(assets.into()); Ok(()) }) }, // In this workshop, we won't be implementing every instruction, just the ones above... // Our executor will simply panic if you try to execute other instructions. _ => unimplemented!(), } } } /// A public trait allowing other systems to access and use the `XcmExecutor`. pub trait ExecuteXcm { /// Execute an XCM from a given `origin`. fn execute(origin: impl Into<Location>, xcm: Xcm<()>) -> XcmResult; } impl<Config: XcmConfig> ExecuteXcm for XcmExecutor<Config> { /// Execute an XCM from a given `origin`. fn execute(origin: impl Into<Location>, xcm: Xcm<()>) -> XcmResult { log::trace!(target: "xcm::execute", "xcm: {:?}", xcm); /* TODO: - Convert the `origin` `into` a `Location`. - Create a new mutable instance of the XCM Executor as `vm`. - Use the `vm` to `process` the `xcm`. */ todo!("{:?}", origin.into()) } } }
#![allow(unused)] fn main() { //! # Fundamentals lesson 5: XCM Executor //! //! Create your own executor for XCM. use super::holding::*; use sp_std::{marker::PhantomData, prelude::*}; use xcm::latest::prelude::*; use xcm_executor::traits::{ProcessTransaction, TransactAsset}; pub trait XcmConfig { /// How to withdraw and deposit an asset. type AssetTransactor: TransactAsset; /// Transactional processor for XCM instructions. type TransactionalProcessor: ProcessTransaction; } /// The heart of the XCM Virtual Machine. pub struct XcmExecutor<Config: XcmConfig> { /// The asset holding registrar, where we keep track of assets being processed by the XCM /// Executor. pub holding: AssetsInHolding, /// Contextual data pertaining to a specific list of XCM instructions. Most relevant the /// `origin` of the XCM Message. pub context: XcmContext, /// Just a placeholder to allow Rust to let us keep `Config`. _config: PhantomData<Config>, } /// The implementation of the XCM Executor and how it processes XCM. impl<Config: XcmConfig> XcmExecutor<Config> { /// Crete an initialize a new XCM Executor. pub fn new(origin: impl Into<Location>) -> Self { let origin = origin.into(); // In our version of the XCM Executor, we ignore `message_id` and `topic`. let context = XcmContext { origin: Some(origin), message_id: Default::default(), topic: None }; Self { holding: Default::default(), context, _config: PhantomData } } /// Process an entire XCM program, instruction by instruction. pub fn process(&mut self, xcm: Xcm<()>) -> Result<(), XcmError> { log::trace!(target: "xcm::process", "xcm: {:?}", xcm); for instruction in xcm.0.into_iter() { self.process_instruction(instruction)?; } Ok(()) } /// Simple helper function to access the `origin` from the XCM Executor `context`. pub fn origin_ref(&self) -> Option<&Location> { self.context.origin.as_ref() } /// Process a single XCM instruction, mutating the state of the XCM virtual machine. fn process_instruction(&mut self, instr: Instruction<()>) -> Result<(), XcmError> { log::trace!(target: "xcm::process_instruction", "=== {:?}", instr); match instr { // Clear the origin. // // This may be used by the XCM author to ensure that later instructions cannot command // the authority of the origin (e.g. if they are being relayed from an untrusted // source, as often the case with `ReserveAssetDeposited`). ClearOrigin => { self.context.origin = None; Ok(()) }, // Appends `who` to the current XCM Executor `origin` location. DescendOrigin(who) => self .context .origin .as_mut() .ok_or(XcmError::BadOrigin)? .append_with(who) .map_err(|_| XcmError::LocationFull), // Withdraw asset(s) (`assets`) from the ownership of `origin` and place equivalent // assets under the ownership of `beneficiary`. // // - `assets`: The asset(s) to be withdrawn. // - `beneficiary`: The new owner for the assets. TransferAsset { assets, beneficiary } => { Config::TransactionalProcessor::process(|| { // Take `assets` from the origin account (on-chain) and place into dest account. let origin = self.origin_ref().ok_or(XcmError::BadOrigin)?; // Transfer each asset using the `AssetTransactor`. for asset in assets.inner() { Config::AssetTransactor::transfer_asset( &asset, origin, &beneficiary, &self.context, )?; } Ok(()) }) }, // Withdraw asset(s) (`assets`) from the ownership of `origin` and place them into the // Holding Register. // // - `assets`: The asset(s) to be withdrawn into holding. WithdrawAsset(assets) => { Config::TransactionalProcessor::process(|| { let origin = self.origin_ref().ok_or(XcmError::BadOrigin)?; // Take `assets` from the origin account (on-chain)... for asset in assets.inner() { Config::AssetTransactor::withdraw_asset( asset, origin, Some(&self.context), )?; } Ok(()) }) .and_then(|_| { // ...and place into holding. self.holding.subsume_assets(assets.into()); Ok(()) }) }, // Reduce Holding by up to the given assets. // // Holding is reduced by as much as possible up to the assets in the parameter. It is // not an error if the Holding does not contain the assets (to make this an error, use // `ExpectAsset` prior). BurnAsset(assets) => { self.holding.saturating_take(assets.into()); Ok(()) }, // Remove the asset(s) (`assets`) from the Holding Register and place equivalent assets // under the ownership of `beneficiary` within this consensus system. // // - `assets`: The asset(s) to remove from holding. // - `beneficiary`: The new owner for the assets. DepositAsset { assets, beneficiary } => { let old_holding = self.holding.clone(); let result = Config::TransactionalProcessor::process(|| { // Take assets from the holding registrar... let deposited = self.holding.saturating_take(assets); // ... and deposit them to the `beneficiary`. for asset in deposited.into_assets_iter() { Config::AssetTransactor::deposit_asset( &asset, &beneficiary, Some(&self.context), )?; } Ok(()) }); // If we were unable to execute `deposit_asset` in the `AssetTransactor`, we reset // the XCM Executor holding registrar since no operations took place. if Config::TransactionalProcessor::IS_TRANSACTIONAL && result.is_err() { self.holding = old_holding; } result }, // Asset(s) (`assets`) have been destroyed on the `origin` system and equivalent assets // should be created and placed into the Holding Register. // // - `assets`: The asset(s) that are minted into the Holding Register. ReceiveTeleportedAsset(assets) => { Config::TransactionalProcessor::process(|| { let origin = self.origin_ref().ok_or(XcmError::BadOrigin)?; // check whether we trust origin to teleport this asset to us via config trait. for asset in assets.inner() { // We should check that the asset can actually be teleported in (for this to // be in error, there would need to be an accounting violation by one of the // trusted chains, so it's unlikely, but we don't want to punish a possibly // innocent chain/user). Config::AssetTransactor::can_check_in(origin, asset, &self.context)?; Config::AssetTransactor::check_in(origin, asset, &self.context); } Ok(()) }) .and_then(|_| { // ...and place into holding. self.holding.subsume_assets(assets.into()); Ok(()) }) }, // In this workshop, we won't be implementing every instruction, just the ones above... // Our executor will simply panic if you try to execute other instructions. _ => unimplemented!(), } } } /// A public trait allowing other systems to access and use the `XcmExecutor`. pub trait ExecuteXcm { /// Execute an XCM from a given `origin`. fn execute(origin: impl Into<Location>, xcm: Xcm<()>) -> XcmResult; } impl<Config: XcmConfig> ExecuteXcm for XcmExecutor<Config> { /// Execute an XCM from a given `origin`. fn execute(origin: impl Into<Location>, xcm: Xcm<()>) -> XcmResult { log::trace!(target: "xcm::execute", "xcm: {:?}", xcm); let origin: Location = origin.into(); let mut vm = Self::new(origin); vm.process(xcm) } } }
diff --git a/fundamentals/src/xcm_executor.rs b/fundamentals/src/xcm_executor.rs
index f03d79b..168bda0 100644
--- a/fundamentals/src/xcm_executor.rs
+++ b/fundamentals/src/xcm_executor.rs
@@ -194,6 +194,11 @@ impl<Config: XcmConfig> ExecuteXcm for XcmExecutor<Config> {
/// Execute an XCM from a given `origin`.
fn execute(origin: impl Into<Location>, xcm: Xcm<()>) -> XcmResult {
log::trace!(target: "xcm::execute", "xcm: {:?}", xcm);
+ /* TODO:
+ - Convert the `origin` `into` a `Location`.
+ - Create a new mutable instance of the XCM Executor as `vm`.
+ - Use the `vm` to `process` the `xcm`.
+ */
todo!("{:?}", origin.into())
}
}
diff --git a/fundamentals/src/xcm_executor.rs b/fundamentals/src/xcm_executor.rs
index 168bda0..f7e8d2e 100644
--- a/fundamentals/src/xcm_executor.rs
+++ b/fundamentals/src/xcm_executor.rs
@@ -194,11 +194,8 @@ impl<Config: XcmConfig> ExecuteXcm for XcmExecutor<Config> {
/// Execute an XCM from a given `origin`.
fn execute(origin: impl Into<Location>, xcm: Xcm<()>) -> XcmResult {
log::trace!(target: "xcm::execute", "xcm: {:?}", xcm);
- /* TODO:
- - Convert the `origin` `into` a `Location`.
- - Create a new mutable instance of the XCM Executor as `vm`.
- - Use the `vm` to `process` the `xcm`.
- */
- todo!("{:?}", origin.into())
+ let origin: Location = origin.into();
+ let mut vm = Self::new(origin);
+ vm.process(xcm)
}
}